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ABSTRACT

We study homogenization of linear dynamic thermoelasticity with

rapidly varying coefficients, using a semi-group approach. The

resulting homogenized problem exhibits an unusual change in initial

temperature.

A formal asymptotic analysis predicts fast time oscillations

in the temperature field. These oscillations explain the temperature

shift, and show that, for our problem, weak convergence in time is

the best convergence that one can obtain.

INTRODUCTION

We discuss the problem of "homogenizing" the equations of linear

thermoelasticity when the mechanical and thermal properties are periodic

and rapidly varying. Following Bensoussan - Lions - Papanicolaou []

and Sanchez-Palencia [7] and using a semi-group approach, we show

rigorously that, as the period of the coefficients goes to zero, the

solution of these equations converges to the solution of a related

constant coefficient problem, the homogenized problem. Then using

a formal multiple-scales method, we give what we believe to be a

satisfying interpretation of some surprizing features of the results.

Thermoelastic behaviour is characterized by the coupling of

hyperbolic equations of motion and a parabolic heat equation. This

leads to several interesting phenomena in the homogenization process.

Fast oscillations in the temperature field are observed; their ampli-

tude remains finite as the period goes to zero. Thus the solutions

can only converge in a weak sense in time to a slowly varying homogenized

solution.
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Furthermore, the initial data for the homogenized problem are

related to the initial data of the inhomogeneous problem by a linear

transformation that is not a projection. We know of no other examples

of such phenomenon.

In section 1, we formulate and prove the existence of a homogenized

thermoelastic medium. Section 2 contains the more formal arguments

and the fast oscillations results, which are at the root of the ob-

served change in initial data.

1. HOMOGENIZATION OF THE THERMOELASTIC PROBLEM

To cut down on the overwhelmingly cumbersome notations that

characterize thermoelasticity, we will place ourselves in a scalar

setting, that is one where the displacement field is taken to be

scalar-valued. Duvaut-Lions [2] show, using Korn's theorem, that

this is no loss of generality.

We consider a domain of 3n. The degree of smoothness of

6Q will depend on the type of boundary conditions adopted. We will

always assume that6Q is smooth enough for one to be in position to

apply Rellich's theorem on compact imbeddings of Sobojev spaces

(Folland [31, Chapter 6).
n 0

We will refer to Y = H 10, yi [ as to the "reference cell"; IYI
i=l

is its volume.

If Z is a smooth hypersurface dividing Y into Y1 and Y2  we define

a ij (Y), X ij (y), CL i (y), a(y), P(y) to be real Y-periodic functions,

smooth and bounded on the closure of Y1 and Y2 but with Z as potential

surface of discontinuity.
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Furthermore, a ij (y), ij (y) are assumed

to be symmetric, strongly elliptic on Y, that

is that there exists OL > 0 such that:

2 Y111) aij (y)(resp. Xij (y)) i > ( I on Y

8(y) and P(y) are bounded away from zero. We finally choose CL such

that O-i is a common upper bound to the L -norms of the coefficients.
W

We extend all coefficients to all of JR by periodicity. Our equations

are (Kupradze [5]):

P (t) _2 (a)ij ( u. - L () TS))

(1.2)

= X X) ( ) - a.j (t) ( at(x.

For the sake of simplicity we will only consider Dirichlet boundary

conditions throughout.

(1.3) u -0 , t 0 on a

And for initial conditions, we will have:

eu£ C
(1.4) u (x,0) - f(x) , 7 (x,O) = g(x) , T (x,0) - k(x)

Our goal is to study the behavior of u and T as £, the period,

goes to zero. I-

'-4
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we define H to be:

(1.5) H - H 1(n) X L 9 X L2(n)
0

On H, we define the operator AC:

(1.6) A~ T- ax. (ij (t£T 0 AM 3x

0. a.) j

with domain

(1.7) D(A) fu= (u, t T)C:H x~ L L(Q) x H (Q)
020

such that ACUCEH in aweak sense}

Then the following proposition holds:

Proposition 1.1

AC generates in H a strongly continuous semi-group of operators

SC (t) such that:

(1.8) I SEWt II <c 1  (V t> 0
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Proof

We first consider for a fixed e the norm

(1.9) IUI2 f[aij(t)- -i + P(-)utut + 0(8)TT]dx

where - denotes complex conjugate.

In view of the properties of the coefficients, I is indeed

a norm on H, equivalent to the natural Sobolev norm on H, noted

11 11 , that is, if U is in H:

(1.10) I ull 2 < Iul a- 1ull 2

In the norm I I, r A. generates a semi-group of contractions.
00

Indeed, the domain D(A.) is dense, since, though C ( ) functions do

not belong to it, C= (2) functions whose normal derivatives are 0 on
0

the only possible surfaces of discontinuity for the coefficients (i.e.

the i-scaled versions of E in each of the cells making up Q) do belong

to the domain D(A.). Checking that AE is closed, that the range of

(I-AC) is H itself and that A. is dissipative offers no special dif-

ficulties (see Francfort (4] for full details). Note that the measure

of the dissipation,

(1.11) Re(AEU, U) = - Re (f X x) - tvrIL2

Sii ax Lx (Q)~~

(in view of the properties of the X 's), is precisely the physical

dissipation due to heat fluxes through the boundary.



The result then follows from the application of Lumer-Phillips's

theorem (Yosida [8], Chapter 9). Therefore,

(1.12) IS,(t)ul, < IuL, for any U in H

and thus, using (1.10),

which completes the proof.

We now leave the time dependent formulation and examine the

behavior of the resolvent of A., RX (A.) as E goes to 0. At the end of

this section we will reintroduce the time dependence by using some basic

properties of semi-groups.

It is a direct consequence of (1.8) (Yosida [8], Chapter 9) that

the right half complex plane belongs to the resolvent set of A., for

every c. Let us consider F = (f, g, k) to be an element of H. Taking

to be real strictly positive, we have the following string of

equivalences:

(1.14) RX (Ac)F U , (U = Cu , Utt))

P(f)Xu lt _ x (a i j (  ax_ J E

a (1
xX > - t X~f C(x) % (ij- (, : ) - =-- -



Au u t  f

x (- P(2E)U - (a OE) ( ) au E (X)tE)) = P() (xf + g)

(1.15) x x x afax.~~~ ii~ X. ii j e ax.1 ) X
1x) A E 12I i-j-x k +aij ('0)1j Vz)x

* The last two equations (1.15) have a unique solution v = Au , T

in (H, since the Dirichlet form d. defined as:
o-

1 ( xavE

(1.16) dF((v ,T ),(TI) = O E ai E .i  dx +

C-
Xf P(-)vC d - ai(x)cJ(j) ai ai dx + I i dx

+ X f T E ~i dx + a xaVc - dxE: ~ ~ i. E xi

is strictly coercive on (H1 (Q)) 2, in view of the properties of the coef-
0

ficients.

E C
If we manage to find a limit for u , T as C goes to zero, then

going back up through the string (1.14) will enable us to get the

limit of RX(AE)F.

Performing the limiting p;ocess in (1.14) is the task of the

homogenization method. Rather than going through all the lengthy details

of the argument, we merely mention the different steps that were per-

formed, underlining only the ones that are not totally standard. For

further details the reader is to refer to Bensoussan-Lions-Papanicolaou

[1], Chapter lo especially Sections 3, 9, and 13, or, for our problem to

Francfort [4].
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First one shows that ue and Te are bounded in (HI(9))2 , which

immediately implies the existence of a weakly convergent subsequence

in (H0 ())
2 converging to (u,T). Since we ultimately show that any

convergent subsequence converges to the same limit we do not distinguish

between the sequence and subsequences of this sequence.

Then, defining

x au x ei= ( x. U j e ) )  the stress,

3

(1.17) K. =F x (-)- the heat flux,
2. i.e ax.

E

1 3 ) ax

it is easy to conclude that these quantities converge weakly in L 2(M)

to Gi' Ki, V, which in turn satisfy:

p 2u - = P(Xf + g)) axi
(1. 18)

'13K. af
- T - x + Xv = k + a x j

where, from now on, will denote the Y-average - fy dy.

It remains to determine Gi, Ki, and v. This is the core of homogeni-

zation. To this effect we define Xk (y), 0k(Y)' T(y) to be the unique

periodic solutions, up to a constant, in H (Y) of:

8



(Xk aaik
i(ai(Y)_ ) - - (y )

aaek axik
(1.19) - (Xi J(Y). Yj) 5Y )

3 1

a (a.. (y) a' a

T can be considered as non standard with respect to the "classical"

case. The functions:

x
(1.20) wk = Vk - E ×kx ) '  x E ()

satisfy:

- @wFx aJfn a i(T) - -T dx = 0

(1.21) z

OE) _ 2 dx -0, for any W,11. in Hl M).
1k A.. X j ax.0

Taking W and I to be C (Q) functions and making use of (1.16), (1.21),
0

we have:

(1.22) d(((Xu E, T ),(WWk, Zk)) -1 aij x ax.

+f (H) k + a. . (2E ) O ----) V- z Fdx

11

E: D~X1  k

9



In (1.22), we have in essence subtracted from the variational

formulation of (1.15) appropriate expressions equal to 0 in order to

eliminate products of weak convergences.

It is then possible to go to the limit in (1.22) in a way identical

to Bensoussan-Lions-Papanicolaou [1], Chapter 1, Section 3. Upon

performing this limiting process 0. and K. come out to be:

) 3.
ai (a ij a akj k )  - ( a i j  C j - j  j k

(1.23)

3.) kjaxk axi

Determining V requires some extra effort and the use of T. One

defines g to be:

(1.24) g =1+ F T()

1
then it satisfies, for any W in H O

(1.25) V -L aw' dx a aitj dx

Going through the same procedure as in (1.22) but with 4 equal to 0

and wk replaced by g ,we determine V to be:

(1.26) V= (a . a 2 + (a
3.) J ii ay . ax.i kj Cjy

10



Defining aij, Ai , Bi , Xij' Yi' 0 to be:

axi

a ij a ij% -'kj 3
A aija j - ai ax

ax.

(1.27) a - .

ij j - kjay

(1 . a2 A.
i1

aDTIakj F-
it can be shown, using (1.19), that aij and ij are symmetric positive

definite, hence invertible, that Ai and Bi are equal and that a is

positive.

We set:

(1.28) ai = aik ik k

Recalling (1.18), (1.23), (1.26)-(1.28) yields:

X2u - ai a2 u - i ) = (Xf + g)

(1.29)
2T +au - af

T (+ O)XT - ij ax x + Xa ij j ax- = k + aij (y) (y) ---

1 ...1 ..1 .. ax.



and, in view of the properties of the a..'s and X..'s, the Dirichlet

13 13

form associated to (1.29) is strictly coercive on (HI(.)) 2 , hence

1 2
(1.29) admits a unique solution in (H ()) Then, using (1.14),

we end up with the following proposition:

Proposition 1.2

1 3
RX (A,)F converges weakly in (H0 ()) to the unique solution in

0
(Hol1) 3 of :

0

Xu- ut = f

(1.30) Xpu - a a Pt.
I ] 1

iax au 

X( + a)T - 2T + at Du t k + Y a

ij 1xax ijj x

We then define A to be:

0 1 0

(1.31) A 1 a2  0 1 a1 j Tx T a Z ijCj  i

S12

0 +j x. ijax.ax.
+ I

It is simply a matter of reproducing the proof of proposition 1.1,

but with constant coefficient this time to show that A generates

a semi-group of operators S(t) such that:

12
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(1.32) Sj s(t)II < , for any t > 0

Renaming C-1 the maximum of C% and U , we deduce from proposition

1.2 and (1.32) the following corollary.

Corollary (1.2)

(AF)F converges weakly in (H1 () 3 to I (A) F where:

- af
"k + Y i a

1 .
(1.33) F= (f, g, 1

+

Now, (1.8) implies that, for any U, there is a bounded subsequence

of SC(t)U that converges weak-* in L,(IR+, H) to G(t) an element of

L,,(I 1+, H). This is a direct consequence of the separability of

L( ]R+, H) and of Banach-Alaoglu's theorem (Rudin [8], Chapter 3).

Still identifying a sequence with its subsequences, we get that, for

any V in H,

(1.34) e (SF (t)U, V) H dt f (G(t), V)H dt

where ) is the natural inner product on H.

But the resolvent of the generator of a semi-group applied on a vector

U is equal to the Laplace-transform of the semi-group acting on U

(Yosida (81, Chapter 9) thus:

(1.35) 0 e- (S(t)U, V) Hdt (RX(A)U, V) H

13



which itself converges to:

(1.36) (RX(A)U, V) = f e -Xt(S(t)u, V)Hdt

Since V is arbitrary, we finally get, using the uniqueness of Laplace

transforms of scalar function that:

(1.37) Gct) = S(t)U (t > 0)

We have proved in this section the following theorem:

Theorem

The generalized solution of (1.2) with Dirichlet boundary conditions

and initial conditions (f, g, k) in H converges weak-* in L, (3,., H)

to the generalized solution of

~au a2u a
t2 a T -ax = ' )

(1.38)
aT a2T a2 u

( a+ ) = Xij -ai. j tx.

with Dirichlet boundary conditions and initial conditions

(1.39) (f, g, - + a

14



Before concluding this section, let us emphasize once more the

rather unusual change in initial temperature in (1.39).

2. FAST OSCILLATIONS OF THE TEMPERATURE FIELD

Since, through a L, weak-* type of convergence a rapidly oscillating
eit/s)

function (like e ) goes to 0, it is fairly natural to expect a t

dependence of u and T. This kind of problem is most easily addressed

using asymptotic expansion techniques. We have already mentioned the

semi-heuristic character of this section so that we will not dwell

on the restrictions to the problem that would make the argument totally

rigorous.

Recalling (1.2) we now suppose that u and T are functions of

botht and 6=t/; t t +: 6" We then Laplace transform

(1.2) with respect to both t and 6, the dual variables being respectively

and 4 . From now on:

A will denote the t - Laplace - transform

- will denote the 6 - Laplace - transform

- will denote Z or ;

In order to be able to perform these transformations we need to

impose initial conditions on both t and 6. We will set:

u (x; 0, 6) = f(x) , u E(x; t, 0) = p(x, t)

(2.1) U(x; 0, 6) = g(x) , a-(x; t, 0) - q(x, t)

T(x; 0, 6) - k(x) , e (x; t, 0) - 0(x, t),

is



where f, g, k are as before and p, q, 0 are unknown. We get:

x 2.,E U 2

( uE2- Up- (a } = ( ( p)

(2.2) C T ( M7 J C

I _~ k + 1" E E

- je a.. (K (2){ (eV - fx1

i~ U.j E, , e TX

We sek n epaiono n ntefr

I. 3 Z E U. (x, y. t' 6)

SE = Z F-i T(x, y, t, 6) , where y - x

The dependence of the u. 's and T.'s on y is taken to be Y-periodic.

This is always what is assumed when performing double scaling in space

in problems related to homogenization.

We also need to control the fast time behaviour of ui and t..1

Since we would like them to be oscillating in 6, or, at least, to be

such that

(2.4) lim Ti(x, t, Y, 6) d6 (respectively Ti )

exist and be finite, we are led, through Wiener's Tauberian theorem

(Rudin [6], Chapter 9) to suppose that:

16



(2.5) lir pu (respectively JiT i ) exists and is finite,

and we will furthermore assume that this limit is to be taken point-

wise in x and weakly in HI(Y) with regard to the y dependence.

With these considerations in mind we can proceed to replace 9x

by 1- + - - and u and T by their expansions in (2.2).ax . ay.i
We obtain two "series" in ascending powers of E starting at F-72

we identify the factors of each of these powers to 0 , one after another.

As factor of C-2 we get:

2 ai o
NcY) G1,u o  p q (a ij 1 ayj

(2.6)

a ij(Y) ) a (Y) 1 C(a - P) 0

Since the Dirichlet form associated to the operator

(2.7) D = P(y) 2. 2. (a(y) (Y)
1y ij ay.i IJ

is strictly coercive on the subspace of H (Y) consisting of Y-periodic
e1

functions, the first equation of (2.6) has a unique solution in H (y);

therefore + is the solution. Hence
1 .1 2

(2.8) u =P + a
0o U 1 2

But, in view of (2.5), (2.8) implies that q - 0 thus u. is equal to

and does not depend on y. Inverting (2.8) we get that u does not

17



depend on 6 either;

(2.9) uo(x, t) = p(x, t)

Then from the second equation of (2.6),

(2.10) T = T (x, V)0 0

since the only periodic solution of that equation is a constant with

respect to y.

As factor of F-1 we get, using (2.8), (2.10):

Du 4 y-o _-i (a (y)cI (y))t

(2.11)

B(y) (VIT - E) IT (X (y) +1 .. a (y 0
. iJ -YJ 1 i j () y

Defining xP and 4 to be the unique periodic solutions in HI(Y) of

2 3i akiU Xi  - _ (akJ(Y) Ty-- k y

(2.12)
(akj (y) 3) (a k j ( y ) tj ( Y )

3k k

we obtain from the first equation of (2.11):

(2.13) Ul - x + t

Then, integrating the second equation of (2.11) with respect to y and

defining YiU and O to be the analogues of Yi and G for Xi and as in

(1.27),

18



+ Y.4'  (def.)

(2.14) 11 = 1o 1' 1+

where denotes the Y-average f dy

y1
we introduce A VIand H1 to be the unique periodic solutions in H (Y),k

up to a constant, of:

S (y) - ) - (a. (Y)LJ(Y) k (y)y)

(2.15)

" i (A
i  Y) ) = - (a.. (y) j (y) 1 i

The equations (2.15) are well-posed since the Y-average of the right-

hand members do vanish by definition of . and

Recalling 0 (y), we obtain for T

(2.16) 1 . ) + H n + an arbitrary function of x onl

(.6)ax= - - j axj

Finally, as factor of e, we get:

P(Y) - f j + DU
r~y (2 -o- 2'1Ul) +Du 2 = - (aij(Y) - ) +

2 2
_ u 1

+ a (y) + a (Y) y a (Y).(Y). i - - (ai (Y)O (Y))T
ax ai (Y axxiy j 1i i j

19



ac S.a 2  a aT 1+ T( - = (Xijy)--.) + Ty- (Y)
1 ]j 1 j

(2.17) 2'1 +Xij(Yya 0 (a f
+ iJ(Y)Tx,-.5- + iJ(Y) X- J-ai (Y)J CL (Y)

ij i axax - i i
i!

a a C ay U2
a (Y)OJ (Y) l ) 

- aij (Y) C (Y) a - (y
ij ay~uI ij - a. YayI1

We integrate both equations of (2.17) with respect to y; making

use of all the previous results of this section, we get:

;- _f _ g) + P3 a_ a
2  ijax ax ii j ax.

k) + 2 OT1 = x1 i

~~Rr~-k) ~~x ax~
aix" 2

(2.18) ki(2ai--- ax- + )ij (Y ) ayj ax.

2fa _ a + a.. 0 -

a x i ( Y ) (2

2 a. iy)c2j( 1 2p a (YC~ ()-- aij (Y)CJ (Y)i'

where a 4 j are to Xj and 'P what a and CL are toX and T in (1.27).
ij' I JL ij )

We now consider the limit of (2.18) as p goes to 0. The following

result holds:

Proposition 2.1

Xk TP, Pi A , PH go respectively to Xi , 0 and 0 strongly

in H (Y)/JR as P goes to 0. Hence a ij Y go to a j, y, a.
iji i 1J )~j

20



The proof of this proposition, which involves some basic esti-

mates in H (Y)/:R will not be given here; refer to Francfort [4]

for the details.

Proposition 2.1 together with (2.5) is exactly what we need

to perform the limiting process. Upon doing so, we come up with a

A
set of two equations for D and n which, together with the limit of

(2.14), can be interpreted in the time dependent domain. p and 0

satisfy:

(8 + a)fl(x, t) - y2E (x, t)

G'x, t) =

2 i xi-xj aij j

(2.19)
2 2

( + a) Tt= Xj axix j  a3 j a t.x i

af
]a + Yiax.

p(x, o) = f, (x, 0) = g, f(x, o) = 1

where n is the limit of as P goes to 0.

It is clear that fl(x, t) can be identified with T(x, t), the homo-

genized temperature field, and p(x, t) with u(x, t), the homogenized

displacement field. Replacing 0 by its value in (2.14) we also obtain

an expression for the leading term of the asymptotic expantion of T

that is T ; its 6-Laplace transform satisfies:
o

(2.20) n _ 1 " + (Y -Y i ) P

S0 +.+ ax2

21



(2.20) is not invertible in general, but the following proposition holds:

Proposition 2.2

and Y go to zero as 11 goes to + 0.

The proof of this last proposition uses the same estimates as

the ones that establish proposition 2.1.

Propositions 2.1 and 2.2 enable us to conclude that, as U

goes to 0, T goes to n, whereas as U goes to + =, T goes to 0.
0 0

In a time dependent context, these facts translate into statements

on the behavior of T near infinity and near the origin,
0

lim 1 Dl+ -6 J T 0 (x, t, ) d6 = T(x,t)

(2.21)

lir 6 + 1 t (x, t, 6 ) d6 = (x, t)
0

The second equation of (2.21) is consistent with our self imposed

6 - initial conditions. The first equation shows that the fast

oscillations of the leading term T of the asymptotic expansion of0

t are centered about T(x,t), the solution of the homogenized problem.

CONCLUSICN

Numerical evidence corroborates t!he results of section 2 and

confirms that fast oscillations are indeed the phenomenon leading

to this unusual change in initial data (4].

If seeking a more physical explanation, one could examine the

entropy associated with the problem:

22



= + a ) U
1

It is fairly straightforward , using the results of section 2 and

some of the steps performed there, to show that there is no fast

dependence in time of the space average of the leading term in the

expansion of s • That the macroscopic entropy of the body is a

slowly varying quantity appears to be a sound idea and does fit

our physical int.ition. A fast oscillation in the temperature field

is the effect that balances the space oscillations of the strains

due to the inhomogenities of the coefficients and allows the entropy

to evolve slowly at its own pace. In this respect the unusual

initial change in temperature is needed to insure that no fast

change in entropy is taking place at time zero.

In contrast with other fast oscillation type problems, the "phase"

of the oscillations in not arbitrary but perfectly determined. It

also appears that a geometrical optics type ansatz in place of

(2.1) will fail since,if the solutions of (2.12) are sums of terms

of more than one frequency in 6, the fast oscillations need not be periodic

in 6.

To conclude this study let us point out that choosing the

entropy as the natural variable in place of the temperature introduces

space derivatives of the third order and thereby prohibits a rigorous

analysis of the type performed in section 1. A perturbation analysis

using double scaling is feasible but eventually leads to reintro-

ducing the temperature field as the proper variable.
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